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f ABSTRACT

In a previous report [2J ,  the au thors have established a least-element

interpretation to Mangasarian ’s theory [-5], [ J  of formulating some linear

complementarity problems as linear programs. In the present report , we

extend our previous analysis to a more genera l class of linear complementarity

~. ~~~
. 

~~~~~~~~~~ ~
‘
a

problems investigated in Mangasariari [ 7 1. Our purposes tare (1 ) to

demonstrate~how solutions to these problems can be generated from least

elements of polyhedral sets and ~~3-4~’Investigate how these ‘~least-element

solutions ’~ are related to the solutions obtained by the linear pro gramming

approach as proposed by Mangasarian.

AMS (MOS) Subject Classifications: 06A20 , 5A24 , 15A4 5, 90C05 , 90C9 9

Key Words: Linear complementarity, Linear programming, Lattice theory,
Matrix theory

Work Unit Number 5 (Mathematical Programming and Operations Research)

/Department of Operations Research , Stanford University, Stanford , CA 94305.

**Mathematics Research Center , University of Wisconsin , 610 Walnut Street ,
• Madison , WI 53706.

Sponsored by the United Stete s Army under Contract No . DAAGZ9-75-C-0024 , and
by the Nationa l Science TT ITT T° ~~~~~~



-— 
~~~~~~~~~~~~~~~~~~~ — ~~~~~~~

A LEAST-ELEMENT THEORY OF SOLVING LINEAR COMPLEMENTAR ITY

PROBLEMS AS LiNEAR PROGRAMS

* **Richard W. Cottle and Jong-Shi Pang

1. INTRODUCTION

In th is  paper , we s tudy  th e linear complementarity problem of finding

a vector x R
n sa t i s fy ing

( 1 . 1) x >  0 , q + Mx > 0 and x T(q ÷ Mx) = 0

where the given n -vector q and n X n matrix M sat is fy  the following

three assumpt io ns:

( M l )  MX = y + qc T

( M 2) ~T~~~~g Ty > 0

(M3)  r T( X  + C) + ST
(Y + C) > 0

where X and Y are suitable Z—matr ice s ( i . e .  real square matrices

whose of f -d i agonal entries are non-po sitive) , C is a diagonal matri x

whose diagonal elements are the components of the vector c, and r ,

s and c are some non-negative vectors . We denote problem ( 1 . 1)  by

the pair (q , M) .  Its feasible set is defined as the polyhedral set

X(q, M) {x E R’~ : x � 0 , q + M x � 0 }

‘
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Mathematics Research Center , University of Wisconsin , 610 Walnut Street ,
Madison , Wi 5370 6.
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The li near complementarj ty problem (q , M) with the vector q

and matri x M sa t i s fy ing  conditions ( M l )  - (M3)  has recently been

st udied by Mang asarj an [7  who shows that such a problem can be

formulated as the li near program

(s i .  Z ) m i n imize  ~~~ subject  to x > 0 and q + Mx > 0

where p = r + M T s . Our purpose in this report is to show that this result

is related to a theo ry of polyhedral sets having least elements.  (A vector

~ belo nging to a set S ii R~ is said to be th e least (~r~~test) element

of S ~f ~ < (�) x for every x ~ S . )  The method of derivation used

by Mang asar ian is not based on least-element arguments . In a previous

repo rt [ 2 ) ,  the autho rs have applied this theory of polyhedral sets having

least elements to the part icular case c = 0 and established that for

every n-vector q, the linear complementar ity problem (q , M) has a

solution which ca n be generated from the least element of a polyhedral set ,

thus providing a least-element interpretation to the linear programming

formul ation of the problem (q, M) which was initially obtained by

Mangasar ian in [ 5 ] .  In the present report , we extend our previous analy sis

to the general case where c is merely non-negative , as described at

the beginning of the introduction . Our purposes are ( 1)  to establish the

least-element characterization of a solution to the linear complementarity

problem under consideration and (2) to demonstrate how this ~‘least-element

solution ” is related to the solution(s) obtained by the linear programming

approach as proposed by Mangasarian . Here , we should point out that all
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the linear complementari ty problems , which are listed in Table 1 of [7  J to be

solv able as linear programs , sa t i s fy  condi tions ( M I )  - ( M 3 ) .  There fore the

least-element theory developed in the present report is app licable to all  of

them . However , it may not necessarily be applicable to those problems

sa t i s fy i ng the more general conditions in Theorem 1 of 1 7 J .

It would be appropriate for us to review some of the essential  resul ts

obt ained in [ 2 J  for the particular case c 0. Using the same notations ,

we denote proble m ( 1 . 2 )  by the trip le ( p , q , M) and by C the class of

square m atrices M for which there exist Z-matrices X and Y such t riut

the following two conditions are sati s fied

( C l )  M X = Y

(02) r TX +  5T~~> 0  for some r , s~~~0

These are precisely conditions ( M i )  - (M3) with c = 0. The following

propositio n is an immediate consequence of the well-known theorem of

Kuhn-Fourier [ 4 ]  on the solvability of a system of linear relations.

Proposition 1. 1. Let X and Y be n )< n matrices.  Then the following

are equivalent

(02) rTX + 5T~~> 0 for some r , s ~ 0

u > 0 ~ )
(02)’ Xu < 0 => u = 0

Yu< 0J

We have established useful necessary and sufficient conditions for

two Z-matrices X and Y to satisfy condition (C2). These are stated below.

—3—
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Lemma 1 .2 .  Let X and Y be Z-matrices of the same order. Then (02)

holds if and only if there exist a principal rearrangement with permutation

matrix P and a partitioning of X and Y such that

X X Y Y
T 11 12 

T 11 12
(1. 3a) PXP = , 

pyp =
X
21 

X
22 

‘x’
21 

Y2;;,

X X
11 12 

*( 1.  3b) is a K—matrix
Y
21 

Y
22

Using this lemma , we have given necessary and sufficient conditions

for M E C .

Theorem 1. 3. Let M , X and Y be n ~ n matrices with X and Y

both Z-matr ices . Then

(Cl)  M X = Y

(C2) r
T
~ + 5T~~> 0 for some r , s ~ 0

if and only if there is a principal rearrangement and partitioning of M , X

and Y such that

M
11 

M
12 

X
11 

X
12 

Y
11 

Y
12

(1.4a) 
M

21 
M
22 

X
21 

X
22 

Y
2~ 

Y
22

x
11 

x
12

(1.4b) .
~
. .

~
, is a K-matrix

21 22

( 1.4c )  X is nonsin gular .

K-matrix, also known as Minkowski matrix, Is a Z-matr lx with a non-
negative inverse.
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The above-mentioned least-element result  for the linear complemeritarity

pro blem (q, M) with M C is stated In the theorem below .

Theorem 1 . 4. Let M t C and let X and Y be Z-matrices satisfying

(C l )  and (02) .  Suppose (q, M) is feasible , i. e. X(q, M) � 4 .  Then

the polyhedral set

nV =  {vE R :Xv> 0 , q + Y v > 0 )

contains a least element ~~. Moreover , the vector ~ = X~ solves the

problem (q, M).

As a consequence to this theorem , we deduced that for every vector

q € R”, the linear complementarity problem (q, M) with M E C can be

solved as the linear program (p, q, M) where the vector p is the (unique)

solution to the system of equation s

Tx = f

for some positive vector f.  We have also shown that the vector p

required in Mangasarian ’s theory can be obtained in precisely the same

way. In the last part of the report, we established several related matrix—

theoretic results , and demonstrated that C includes all the matrices

investigated by Mangasarlan in [6].

We explain the notations used in the paper. All vectors and matrices

under consideration are real . A Z-matrix X is said to be a h-matrIx

If (X + ci) is a K-matrix for every c > 0. The letters Z, K0 and K

will also denote the class of Z-, K0
- and K—matrices respectively.

—5—
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I
Various characterization s of K- and K0—matrlces 

can be found in [3 1.

We denote the range space of a matrix A by ~(A) , I . e. 9(A) consists

of those vectors which can be represented as linear combinations of the

columns of A. Let M be an n X n matrix. If I , J C {l , . . . , n ) ,

we define

m . . . .  m , -

‘l~l ‘l i t

m . ... m .

— 
‘sJ l 

i sJ t

where I {i
1, • 

. , i }  and J = (j 1, . • . , 

~~ 
with 1 < • < I < n

and 1 < i i 
< < j~ 

< n. in particular , M
11 

is a principal submatrix

of M . Similarly, If q E R’1, we defi ne q1 (q . , .. q )
T We denote

the summation vector (i , . . . , 1) by e.

— 6— 
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2. CONNECTION WiTH LEAST E L E M E N T S

2 . 1. General discussion. Let q be an n-vector and M an n x n

matri x sa t is fying conditions ( M i )  - (M3) for some Z-matrices X and Y,

and some non-negative vectors r , s and c. Throughout this section ,

these vectors and matrices are assumed to possess the properties jus t

me ntioned. We shall develop a least-element study of the linear

comple mentari ty prob lem (q , M) with such a vector q and matrix M.

As a co nsequence of our investigation , we shall establish a least-element

interpretatio n for the result obtained by Mangasarian [ 7 ]  of formulat in g

such a li near comp lementarity problem as the linear program (p ,  q, M) with

p r + M
Ts. We start by proving a lemma which strengthens condition ( M 3 ) .

Lemm a 2. 1. Let c , r and s be non-negative vectors and let X and

Y be Z-matrices. If condition (M3 ) holds , then

( M3) ’ r + S > 0

Proof: It suffices to show that for every i = 1, . . . , n , r , = 0 (s . = 0) => s . > 0

(r . > 0).  So assume r . 0 , say . Then

0 < ( r~ (X + C) ÷
T(y ÷ c))

= ~~ r X .. + s .Y .. + s .(Y ~. + c )
j~j J 11 ) J i  1 11

< s (Y.. + c ,)
— I ii 1

Thus s . > 0. SimIlarly, we may deduce [s.  = 0 > r . > 01 . Therefore

(M3)’ follows.

—7—



Remark. Condition ( M 3 ) ’  was referr ed to as a special case , but not as a

consequence of (M3) in [ 7 J .  In fact , if c > 0  ( as in Corollary 1 of [ 7 J ) ,

th e two conditions are equivalent .

We recal l that if M C , the matri x X sa t i s fy ing ( C l )  and (02)

mus t  be nonsingu lar  ( Theorem 1. 3). The following example illustrates

that the re can be singular  matrix X sat isfying ( M i )  - ( M 3 ) .

Example 2 . 2 .  Let q = ( 2 ) and M = (~ ~). The problem (q , M) has

two solutions , namely, (~
‘
~~) and 

(~ ). If X = (~~ ~) , Y = (~ ~),

r = (~ ), s = (~ ) and c = (i) ,  then conditions ( M l )  — (M3)  are satisfied .

Nevertheless , X is si ngular.  Moreover , it is not hard to verify that M j c .  0

The fact that there exist such singular matrices X indicates that

in order to develop a least-element theory for the linear complementarity

problem (q, M) , one should not merely concentrate on the range space

of X. In fact, the same example above shows that 9(X) fl X(q, M) = 4’.

Later in our discussion , we will see that this latter relation always holds

If X is singular and the stronger condition (02) is imposed (see

Proposition 2 . 2 6  and the remark following it) .

It is clear that If M ~ C , then conditions ( M l )  - (M3)  are satisfied

f or every vecto r q. Nevertheless , if a matrix M satisfies ( M i )  - (M3)

for some vector q, it does not necessarily follow that M e C. Exampl e 2 . 2

illustrates this fact. The following provides another example.

1
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Examp le 2 . 3 .  Let q = (~~) and M = (~~ ~) .  Then conditions ( M l )  - (M3)

are sa t i s f i ed  wi th  r = (~ ), s = (h) , c = (~ ) , X = (~~ ~) and Y = 
~~~

We show M ~ C . Suppose not , then there exists  ( i i  

~
) Z such that

-l 1 x -x -x - x  x + x

(2 
~~~~~~~ 

= 
(2x:~ +~:~ 2x:: -

x
11 

-x
12 

-x
li 

- X
2l 

x
21 

+ x22and (r
1 ,

r2) x
22 

~ 
~~~~~~ 2x 11 

+ x2 -2x
12 

- x22 
>0 for

some non — negat ive  scalars r 1 ,r 2 , 
~l an d s

~~
. It follows that 2x

11 
+ x

21 
< 0

which implies x
1 

< —
~~~

- x
21 

< 0. Similarly, x
12 + x

22 
< 0 implies

x
22 

< -x
12 < 0. There fore Lemma 1 . 2  implies that

-x
li 

- x Zl x
l2 

+ x22
( K .

2x
11 

+ x2 
-2x

12 
- x~2

-x — x  x -I- x
In part icular , det 11 21 12 22 

> 0. Since det M < 0 , it2x
11 

+ x 2 -2x
12 

—

follows that

x
11 

-x
12

( 2 . 1 )  det -
~ 21 ~22 

= x
22 

- x
12
x21 

< 0  .

Furthermore,

x
11 

+ x12 
<0 => x~~ <-x21 

<0 .

We have shown that x
22

< - x
12~~~0; thus x

11
x

22~~~x 21
x

12 
contradicting

(2.1). Therefore (~~ ~) 4 C.

— 9— 
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The v~ examples illustrate that the present class of linear

com~ iumt~r~tarity problems (q, M) with q and M satislying (Ml) - (M3)

is a genuine extension of the previous class of problems (q, M) with

C . Example 2. 3 was used originall y in [ 7 1  by Mangasarian for

another purpose .

~~~. 2. The set ‘.. We define

= € R
n 
: u > 0, Xu < 0, Yu < 0, cTu = 1 }

Thi s polyhedral set ~ plays a very important role throughout our whole

iiscussion. It may be empty, for exa mp le , i f c = 0 as in the case of

M C . The following example illustrates that it can sometimes be non—

empty as well.

0 3 4 —2
Example 2.4. Let M = 1 — 1 0 and q = 0 . Then with c s e,

0 — l —3 1

2 —l —2
r = 0, X = -I and Y = -l 1 0 , conditions (Mi) - (M3) are

-I 0 2

2/5
satisfied. In this case, u = 2/5 ~ ‘L~. We shall say m ore abou t th is

1/5

exam ple later.

The proposition below describe s the relationship between vectors

in ~i ( i f  any) and solutions to the 1~ne ar complementarity problem (q, M).

Proposition 2 . 5 .  If u E ‘1), then x = -Xu is a solution to (q , M).

Proof: If x = -Xu where u t( , then x ~ 0; moreover ,

-1 0-
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q + Mx = q - MXu

= q - (Y + qc T)u

= - Y u � 0 ,

i . e . x X( q , M) . We also have

T T
0 <r x + S (q + Mx)

= _ (rTX + sTY)u <0

The refore , for each i = 1 , n ,

r . x . = s.(q + Mx). = 0
1 1  1 1

If x . > 0 , say, then r , = 0. Condition (M3) ’  implies S
i 

> 0 which

gives (q + Mx) . = 0. There fore the vector x defined above solve s the

problem (q, M).

Rem ark 1. In the proof above, the assumption that X and Y are Z-matrices

is required in order for condition (M3)’ to be applicable . Therefore , if

condition (M3)’ holds by itself (as in Corollary 1 of [7]), then the

proposition is valid for any matrices X and Y (which are not necessarily

Z-matrices) satisfying conditions (Mi) and (M2).

Remark 2. The feasibility of the problem (q, M) is not a requirement ,

but a consequence of Proposition 2. 5.

Proposition 2. 5 shows that if the set t~ is nonempty , then a

solutio n to the linear complementarity problem (q,  M) can be obtained

by f i rs t  fi nding any vector u in t~, or equivalently , solving the system

of linear inequalities

— 1 1— 
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u > 0 , X u < 0, Y u < 0 and c
T
u =

and then setting x -Xu . The question of whether 2~ is no nempty is

itself answerable by linear programming . The next proposition shows

tha t if ~ � 4’, then any vector x such that x = -Xu for some u

actually solves the linear program (p , q, M ) where p = r + M T5.

Proposition 2 . 6 .  If U t  V , then ~ -X~ solves the li near program

( p , q , M) with p = r +M Ts.

Proof: If x X(q , M) , then

T T T T
p x =  (r + s  M)x > — s q .

On the other hand , the proo f of the last proposition shows that

-XU X(q, M) if U t V .  Furthermore , with such an , we have

T_ T Tp x = -(r + s M)XU
T T —  T T

= — ( r X + s  Y)u — s q  = — s q .

Therefore , any such ~ solve s the linear program (p, q, M).

Corollary 2 . 7 .  If M is nondegenerate ( i . e .  every principal submatrix

of M Is nonsingular) and if V � 4’, then the linear program (p, q, M)

with p = r + M Ts has a unique solution 5~. Furthermore , ~ = -Xu for

every u e t ( .

Proof: That the linear program has a solution ~ follows from Proposition 2. 6.

To show Its uniqueness , let x be a solution to (p , q ,  M) .  Then the

proof of Proposition 2. 6 shows that , in fact ,

r x = S (q + Mx) = 0

—12— -
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I f 1 = : r . > 0) an I = (I , . . . , n }\ I , then x mus t  necessarily

sat isfy  the fo l lowing system of equat ions

0 I 0 x
(2.2) + = 0 .

q~ M~1 
M~1 

x~

Here we have used the fact that  s~~> 0 by ( M 3 ) ’ . By the nondegeneracy

of M , the system (2.2) has a unique solution. This establishes the

uniqueness of x. The last conclusion of the corollary is immediate .

Remark. The matrix M in Example 2. 4 is degenerate ; nevertheless , the

proof of the corollary shows that any solution to the linear progr am (p, q, M)

must  sati s fy q + Mx = 0. Since M is nonsingular , the LP-solution

2/5
x = 2/5 is unique . This solution was also obtained in [ 7 ]  by actually

1/5

applying the simplex method to the linear program . Its uniqueness was

not proven there .

The results above establish the relationship between vectors in V,

solutions to the linear complementarity problem (q, M) and solutions to

the li near program ( p , q ,  M) .  In the sequel , we divide our di scussion into

cases . In each case, we shall construct a polyhedral set having a least

(or greatest) element and demonstrate how a solution to the linear comple-

mentarity problem can be generated from this element. In the analysis , we

shall need two fundamental  results from lattice theory . These are stated

in Propositions 2 .9  and 2 . 1 0 .  Their proofs are easy and are omitted .

— 1  3—



Defini t i on 2 . 8 .  Let S be a subset of Rn . Then S is said to be a

meet (j~j~) sern i-sublattice (of R r
~) if for every s, t € 5, the meet (j ~ j fl)

of s and t, defi ned as the vector u = (u , ) where u , min(s ., t .)

(ma x(s . ,  t . ) )  for every i , belongs to S. The set S is ~p~rided below

* n *(above) ti the re exists a vector s R such that s > (~ ) s for every

5 ( S.

Prop ositio n 2 . 9 .  The following are equivalent:

i )  L is a polyh edral meet (j oin) semi-sublattice of

2) L = {s t Rn : As > b) for some matrix A and vector b , with A

havi ng at most one positive (negative) element in each row .

Proposition 2. 10. Let L be a nonempty meet (join) semi-sublattice of Rr
~.

If L is closed and bounded below (above), then L has a least (greatest)

element. Furthermore , this element can be obtained by solving

(2. 3) minimize (maximize) fTx subject to x t L

for any positive vector f.

We should also mention that a least (greatest) element of a meet (join)

semi—sublattice L of Rn actually solves the program (2. 3) for any non-

negative vector f and it is the unique solution if f is positive .

In the theorem below , we describe a polyhedral set with a least

element and show how this element can easily generate a solution to the

problem (q, M) in the case t4 � 4’.

— 14 —
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Theorem 2 .11. De fIne

= 

i — I  
{u e R~ : u < 0, Xu > 0 , Yu > 0, c.u . � — i )

Then 3 has a least element U. Furthermore , if ~ � 4’, then c
Tu ~ -l

and the vector ~ = _x( _
~— ) solves the linear complementarity problem (q, M) .

Proof: Proposition 2 .9 implies that 3 is a meet semi—sublattice of

It is obviously closed and nonempty because o 3. We show that 3

is bounde d below. Let u E 3~ clearly u . > ~l/c~ 
for every i e I

where I ~i : c . > o}. Furthermore , letting I = {i : c . = 0) ,  we have ,

(2 .  4a) X
1~

u~ � _X~1u 1 > —X 11d1

and

(2. 4b) Y
1~
u~ ~ 

—Y
11
u1 > _Y

JI
dI

where d = ( d .) is the vector with d . = -1/c . for i t I and o other-

wise . On the other hand , it follows from condition (M3 ) that

r~X~1 
+ s~ Y11 > -(r~X1~ + 4Y1~

) .~~~ 0

i .e .  the Z-matrlces X
1~ and satisfy condition (02).  Therefore by

X
Lemma 1. 2 , the matri x contains a complementary submatrix which

II
is Minkowski . This fact , together with inequalities (2 .  4a) and (2.  4b)

implies that u~ Is bounded below by some constant vector. Hence 3 is

bounded below. Therefore it has a least element U by Proposition 2. 10.

— 15 — 



Clearl y -u t 3 If u V .  Thus , U < -u for every u V .  Hence

cTU < - 1  If 1.~ ~ 4’. It is then clear that V .  There fore the last

assertaion of the theorem is an immediate consequence of Proposition 2 . 5.

Remar k. The assumption ~ 4’ Is essential in order for the vector i~

in the theorem to be well-defined , because otherwise , cTU might be

zero (e.g.  c = 0).

Example 2 . 12 .  Consider the problem (q, M) in Example 2 . 2 .  We have

V = {(~ ))  and

= t R 2 : u = 0 and —2 < u 2 < 0)
2

The least element of 3 is (~~ ).

N + x2 = 2 /
x1 — x 2 = 1

X(q , M)

i~ ~i \ \ This is the solution
2 ’ obtained in Theore m 2. 11.

It is also the unique solu-
tion to the linear program

, 0) ( p , q , M) .

/ Both are solutions

/
/‘ to (q, M) .

I, / Fig . 1. V~~ 4 ’.

— 1 6-



I
Combin ing  Theorem 2 . 1 1  with Corollary 2 . 7 , we conclude that if

M is nondegenerate and if V � 4’, then the (unique)  sol u tion to the

li near program (p , q, M) is give n by the vector ~ = -x where U

is th e least element of 3. This result provides a least-element interpreta-

tion to the solution of the linear program introduced by Mangasarian.

2. 3. The case where ~ = 4’ and X is nonsingu lar.  Having completed

our discussion of the case V � 4’, we proceed to investigate the case

V = 4’. We establish the following important lemma.

Lemma 2 . 1 3 .  If V = 4’, then the following implication holds

U > 0~~

(2 .  5) Xu < 0  ~~> u = 0

Yu < 0  J
Proof: Suppose there exists a nonzero vector u such that u ~ 0 , Xu < 0

and Yu < 0 .  Then we must  have cTu = 0 because otherwise

contradicting the assumption.  Thus , Cu = 0. Hence ,

0 < [ r T( X + C) + 5T(y + C ) ] u

T T< ( r  + s  ) C u = 0

which is a contradict ion .

In fact , the converse of Lemma 2. 13 hold s , namely,  if (2 .  5) holds ,

then ~ = 4’. Now , by Proposition 1 . 1 , condition ( 2 . 5 )  is an equivalent

formulation of condition (C2) .  Therefore , adding the assumption V = 4’

to ( M i )  - (M 3 )  is ac tual ly  equivalent  to replacing conditions (M2)  and (M3)

by th e single stronger condit ion ( C 2 ) .

— 1 7 —



Corollary 2 . 14 .  Let V = 4’. Then

Tu ~ 0 , Xu = 0 => c u � 0

Proof: Indeed , if th ere exists a nonzero vector u such that Xu = 0
Tand c u = 0. Then it follows fro m ( M i )  that  Yu = 0. But this Is

impossible because by Lemma 2. 13 above and Lemma 1 .2 , the matrix (~ )

contains a nonsingular complementary submatrix; this latter fact implies

u = 0 , contradIcting the assumption . j

We have given an example earlier illustrating that there can be

singular m atrix X satisfying conditions ( M l )  - (M3) .  The proposition

below shows th at if V = 4’, such matrices have rank at least n - 1.

Proposition 2 . 15 .  If V = 4’, then r ank(X)  �, n - 1.

Proof: Suppose rank (X) < n  - 1. Let u 1 and u 2 be two linearly

independent vectors such that Xu ’ = Xu 2 
= 0 and cTu 1 

= cTu 2 
= 1.

The existence of these vectors follows from the assumption and Corollary 2. 14.

We then have

1 T i  2 T 2Yu + q ( c u ) = Y u  + q ( c u ) = 0 .

Thus ,

Y(u 1 - u 2 ) = O .

But we also have

X(u 1 
— u 2) = 0

There fore , U
1 

= U
2

. This contradicts the linear independence of u1 and u 2 . j

It is clear that there are Instances when X is nonsingular , e .g .

c = 0. The example below Indicates that the case where rank (X) = n - 1

—1 8—



is also possible even If V = 4’. Later In our discussion , we shall provide

necessary and suff ic ient  conditions for X to be nons ingu lar  (see Theore m 2 . 2 2 ) .

Example 2 . 16 .  Let q = (~~) and M = (~~ ~). The problem (q , M) has

a sol ution Now let X 
~ ~) , Y = i~’ c = e, r = and

s ( s). Then MX = Y + qc T 
and r

T
~ + 5

T~~> 0 Therefore V = 4’.

Nevertheless , X is of rank 1.

In the sequel , we shal l f irst  establish the least—element results

for the case where X i s nonsingular .  Then we shall prove two characteriza-

tion theore ms having to do with the nonsingu lar i ty  of X. Finally , we

shall  investigate the last  case , namely,  where X has rank n - I .

If X is non singu lar , the n the linear complementarity problem (q, M)

is equivalent to the following complementari ty problem (LECP 1):

q( l  + c ~ u) + Y u > 0 , X u > 0  and [q ( l  + c Tu) +y~jTx~ = o .

The equivalence is based on the transformation x = Xu . It is clear that

x is a (feasible) solution to the problem (q, M) if and only if u X 1x

is a (feasible) solution to the problem (LECP 1). Let denote the

feasible se t of the latter problem , i . e .

= ~u t R1
~ : q(l + cTu) + Yu > 0 , Xu > o )

Proposition 2 .17 .  II V = 4’, then 1 + ~~~ ~ 0 for every u E 3~ .

Proof: Suppose there is a u t such that 1 + cTu 0. Then it follows

that Yu ~ 0 , Xu ~ 0. Since the matrix (~ ) contains a Minkowski cornple-

mentary submatrlx , we must have u ~ 0 contradicting the assumption that

-19-
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By the convexity of it follows that one and only one of the

following two statements must  hold:

(2.  6a) 1 + cTu > 0 for every u t ‘1

(2 .  6b) 1 + cTu < 0  for every u

Lemma 2. 18. Let V = 4’ and � 4’. Suppose (2 .  6a) ( ( 2 .  6b ) ) holds. Let

= {v t R’~ : q + Yv > (~ ) 0, X v >  (~) o)

Then has a least (greatest) element ~ sati s fying cTv < ( > ) l .

Furt hermore , (q + ~V) T(X~) = 0.

Proof: Proposition 2.9 implies that 
~ l is a meet (join) semi—sublatt ice

of Rn . It is obviously closed. The fact that (~ ) contains a Minkowski

complementary submatrix implies that .â’~ i s bounded below (above). We

show that it is nonempty . Let u t 

~l 
satisfy i + c

T
u > (<) o , then

it is not hard to see that the vector

(2.7) v =  
U
T

1 + c u

belongs to 
~ 1 • By Proposition 2.10, .â~ has a least (greatest) element ~~~.

That ~ satisfies ~~~ < (>) 1 is clear because ~ < (i) v and cTv < (> ) i

where v is the vector defined in (2. 7). To show that ~ satisfies the

complementarity property, we refer the reader to the proof of Lemma 3. 10

in[2]. o

Remark. The polyhedral set does not depend on the vector c. If

(2. 6a) holds, this set Is precisely the set V mentioned in the introduction.
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The fol lowing resu l t  g eneral izes  Theorem 1. 4 pertaining to the

problem (q , M) with M e C’ which corresponds to the cas e c = 0.

Theorem 2 .~j .  Let V = 4’. Suppose X is nonsingu lar  and the problem

(q, M) is feasible . Then the vector

(2 .8) = x ( — ~~~T )

where ~ is the vector obtained in Lemma 2 . 18 , is a solution to the

linear compleme ntar i ty  problem (q,  M) .

Proof: In f act , if x X(q, M),  then u = X ’x Therefore the

vector ~i is well -defined and so is U = 
V It is easy to show

that U solves the problem (LECP 1). Therefore by the equivale nce of

the proble ms ( q ,  M) and ( LECP 1 ) me ntioned earlier , it follows that the

vector x de fined in (2 .  8) solves the problem (q, M) .

Theore m 2. i~ shows how , under the assumptio ns in the theore m , a

solutio n to the l inear  comp lementari ty ~rob lem (q,  M) can be generated

from the least (or greatest)  element of the polyhedral set One

notice s that in some instances , the linea r complementarity problem has a

solution generated from the greatest element of a polyhedral set. This

m ay seem , at f i r s t  gla nce , somewhat inconsistent with the title ‘A least—

elem ent theory . . . “ of the report and with the phrases “least-element

solutio ns ” , “least -element characterization ”, etc. . . .  which hav e been

u sed throughout the re port. However , it is not hard to see that such

— 21— 
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greatest -element results  can always be changed into least-element results

Ly a very t r iv ia l  modi f icat ion , namely ,  by consid ering the negative of

the polyhedral sets having the greatest elements. We have not made this

change of variables in Lemma 2. 18 , and w ill no t do so later because we

want  tu present the resul ts  in their most natura l  fo rm at .

In the seque l , we establish a relationship between the Vector X

generated in Theorem 2. 19 and the solution(s) to the linear program

(p , q , M) with p = r + M T5 . Specifically,  we show that ~ solves any

such l inear program ; moreover , it is the unique solution if the vectors r

and s satisfy the stronger condition (C2).

If X is nonsingular , the n under the nonsingular  transformation ,

x Xu , the linear program (p,q, M) is equivalent to

(2.9) minimize (p
T
X)u subject to q + MXu > 0 and Xu > 0

Noti ng that

T T T T T T Tp X (r + s M)X = (r X + s Y) + (s q)c

we may write ( 2 . 9 )  as

(2 .  10) minimize  (r TX + 5TY)u + 5 Tq( 1 + cTu ) subject to u e

In order to s impl i fy  the following discussion , we a ssume that (2.  6a)

holds. Since ~ is the least element of .

~~~~~

, it solves the linear program

(2.  11) minimize f Tv su bject to v €

for any nonnegative vector 1, and it is the unique solution to ( 2 . 1 1)  for

any p o s i t ive vecto r f.  It is then easy to deduce that the vector

—22—
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(2 .  12) U = T (or eq uivalent ly,  ~~ = 
U

1 - c v  l + c u

solves the ( f ract ional)  program :

T
( 2 . 1 3 )  m i n i m i z e  f sub jec t  to u

I + c

~or any nonnegat ive  vector f , and it is the un ique  solution to ( 2 .  13) for

any positive vector 1.

Theorem 2 . 2 0 .  Let ‘
~~ = 4’. Suppose X is nonsingu lar  and (q, M) is

f easible. Then the vector ~ (defined in (2.8)) solves the linear program

(p ,  q, M) with p r + M
T
s. Moreover, it is the unique solution to any

such linear program with r T
~ + 5 Ty >  0.

Remark. This theorem is valid no matter which one of the two inequalities

(2 .  6a) and ( 2 .  6b) is valid. To s impl i fy  the proof below , we con tinue to

assume  ( 2 . 6 a )  holds.

Proof of the theore m: It suffices to show that the vector U (defined in

(2 .  12))  solve s (2 .10)  and U is the unique solution to (2 .  10) if

r T
~ + 5

T~ > 0 .  Let u t 

~~
, then u 

T ~~~ 
Thus

1 + c u

(r TX + 
T~ ) U 

T < ( r TX + 
T~ ) Ti + c U  1 + c u

which implie s

( 2 . 1 4 )  (r TX + s T
~~U + s Tq(l  + c TU ) < [ ( r TX + 5 TY ) u + s Tq(i  + cTu ) }  1 + C U

l + c u

—23— 
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Fur thermore , we have

— U Li

T
l f c u  1 + c u

Hence,

1~~~ c u
< 1

1 + c Tu

On the other hand ,

(r
TX + s

Ty) u + sT
q(l + c

Tu) = r T(Xu ) + 5
T(q + (Y + qc T) u )  ~ 0 .

Therefore , for u

T T .  T T_ T T T T(r X + s  Y ) u + s  q( i  + c  u) < (r X + s  Y ) u + s  q( l  + c  u)

i . e . ~ solves (2 . 10).

Conversely, if u solves ( 2 .  10),  then (2. 14) must  hold as equal i ty .

Therefore , we have

( TX + 
T~) U 

T_ = ( r TX t 
T~ ) T1 + c u  l~~~c u

i .e .  u also solv es (2 .  13). Now if r Tx + 5
T~ > o , ~ lo i l ws from the

uniqueness of U that u = U.

Example 2 . 2 1 .  Let q = (~~ ) and M = (~~ ~).  The problem (q,  M) has

solutions (~ ) and (~ ).  If X = (~~ ~) , Y = (~~ 
°

~~, r = (~ ), s = (~ )

and c = (~ ) , then MX = Y + qc T 
and r

T
~ + 5

T~~> 0. It is not hard to

show that M $ C .

L 
_ 
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Before proceeding to s t u d y  the case ra nk (X )  n - 1 , we prove

two theorems. The firs t of which characterize s the nor is ingu la r i ty  of X ;

whereas  the second provide s necessary and s u f f i c i e n t  conditions for

( 2 .  ‘~~~~ ari d ( 2 .  i b )  to hold.  As a consequence of the theorems , we deduce

tha t  the a s s u m p t i o n s  in Lemma 2 . 18 and Theorem 2. 11 are ac tua l ly

equ iva l en t .

Theore m 2 . 2 2 .  The fol lowin g two conditions (2 .  15) and (2 .  16) are equivalent :

(2 .  15) X is nons ingu l a r

(2 .  1~~) there exis t  a principal rearrangement , wi th  permutat ion matr ix  P,

and parti t ionin g of X , Y, q and c such that

x x ‘
~11 12 11 12

(2 . 16a ) PTXP 
~ X ‘ 

~~~~ =

21 22 21 22

T T 1
(2 .16b)  P q =  , P c =q 2 c2

(2.16c) X
11 and (Y22 

- Y
21

X 1~ X
12

) are nonsingular

(2 .  1 6d) 1 + (4-  c~ X~~ X
12

)(Y
22 

- Y
21

X~~X
12

)~~ q 2 � 0

Proof: That (2.  i s )  implies (2 .  16) is trivial . For the converse , it suffices

(see [ i ] )  to show that the matrix X
22 

- X
21

X~~X
12 

is nonsingular.  We have

M
11 

M
12 

X 1 X
12 

Y 1 Y
12 

q
1cT

M
21 

M
22 

X
21 

X22 
= Y

21 
Y
22 ~ q

2
cT P .

— 26- 
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Solving for M
21 

in

M
21

X
11 

+ M 22 X
21 

= + q 2c~

gives

M
21 

= (Y 2 
- M

22
X

21
)X~~ + q 2 c~ X 1~

S u b s t i t u :~ng this la t ter  equa l i ty  i n

TM 2 X 2 * M
22

X
22 

= Y
22 +

yiel is

- ~) = (Y
22 

- Y
21
X~~X ~ 

+ q 2 (c~ - c~ X 1~
X

12
)

(Y 2 
- Y2 X 1X ) [ i  + (Y 22 

- Y X 1X ) ‘q ( c T 
- cTX~~ X 2 j j

Cond i t ion  ( 2 .  l~~d) impl ies

det[ I + (Y
22 

- Y x l x ) 1q ( c
T 

- c~ X 1~ X
12 ) J

= I + (4 - c~X1~
X
12
)(Y22 

- Y
21

X 1~~X
12

)q2 ~ 0

Thi s est ablishes the nonsingulari ty of X
22 

- X
21
X~~X12

.

Rem ark. The argument  used above is a generalization of the one in

Theorem 1. 3 for the case M ~ C .  In the proof , we have used the

condition ( M i )  only. So in fact , th e theorem provides necessary and

suff ic ient  conditions for the matrix X (not necessarily Z-matrix) sat isfying

MX = Y + qc T for some matrices M and Y (not necessarily Z-matrix)

and some vectors q and c (not necessarily non-negative), to be

nonsingular .
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Theorem 2 . 2 3 .  Let V = 4’. Suppose ~ 4’. Then ( 2 . 6 a )  ( ( 2 . 6 b ) )  holds

i f  arid only if there exist a principa l rearrangement with permutation matrix

P , and partitioning of X , Y, q and c such that

X X Y Y
T ii 12 T 11 12

( 2 .  17 a) P XP = X X ‘ ~ 
yp = 

~21 22 21 22

(2.17b) pTq = pTc (::)
x x

11 12
(2 . 17c)  ,

~
, 

~
.

2 1 22

(2. l7d) 1 + (4- c~ X 1~ X
12

) (Y
22 

- Y
21

X~~X
12

)q 2 > (<) 0

Proof: “Sufficiency ’ . Let u 
~ ~~~~

. Then we have

0 X X u
+ 

11 12 1

q
2(l +c

T
u) Y

21 
Y22 u2

X X -l

Condition (2. 17c) Implies that ~! 
1 ,~,12 

> 0; thus
21 22

X X -
~ (011 12 1

(2.18) 
~
. 

~
, (1 ÷c

T
u) + u > 0

21 22

Let t = satisfytz
X
11 

X
12 

t
1 

0

‘1
21 

‘1
22 t2 

= q
2

—28—



Then ,

t l = _X~~Xl2
t
Z

and,

t2 = (Y~~ - Y21X1~
X
12~~~

q
2

We can write (2. 18) as

t( i  + cTu ) + u ~ 0

which implies

(2. 20) (1 + c
T
t)(l + cTu) � i

Now, by condition (2. l7d)

(2. 19) ~ + 
T
t = 1 + (4 — c~

’X~~X
12

)t 2

= 1 + (4 - c~X1~
X

12
)(Y

22 
- Y21

X
1~
X12) 

1q
2 > (<)o

Therefore 1 + ~~~ > (<)O for every u E 

~~ 
i.e. (2. 6a) ((2. 6b)) holds.

“Necessity”. The existence of the permutation and partitioning such that

conditions (2 .  17a) - (2. ]7c) are satisfied is an immediate consequence

of the assumption V = 4’ and Lemma 1 .2 .  So it remains to verify (2. 17d).

The deduction above shows that (2.  20) is valid for every u Now

If � 4 and (2. 6a) ( ( 2 . 6 b ) )  holds , then it follows from ( 2 . 2 0 )  that

1 + c
T
t> (<)0, or equivalently, (2 .  17d) holds.

We have seen that if X is non singular and If the problem (q, M)

is feasible, then � 4’. Combining Theorems 2.22 and 2.23, we

conclude that if V = 4’ and if � 4’ then (q, M) is feasible (in fact,

has a solu tion) and X mus t be nons ingular.

—29—



Corollary 2. 24. If V = 4,, the following are equivalent

(2. 21) X is nonsingular and (q, M) has a solution (given by (2.  8))

(2.22) 
~l ~ 4’

2.4. The case where V = 4’ and X is singular. In the rest of this

paper, we investigate the remaining case, namely V = 4’ and rank (X)

= n - 1. Let u° be the (unique) vector satisfying

0 T OXu = 0 and c u = 1

The existence of such a vector follows from Corollary 2.14. Then, it

follows tha t

(2.23) q = -Yu° -

Let u1 be a nonzero vector satisfying XTu
J 

0. It foll ows from

elementary linear algebra that , for any x e Rn , there exist u R’1

Iand a R such that

(2.24) x = Xu + au ’

Under such a representation , we have , by (2.  23)

1q + Mx = q ÷ MXu + aMu

= q(l + cTu) + Yu + aMu’

T O  1
= u - (1 + c u)u J + aMu

PropositIon 2. 25. Under the IdentIfication (2.  24), the linear complementarity

problem (q, M) is equivalent to the problem (LECP2) of finding a vector

U E R~ and a scalar a such that

— 30—
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aMu1 
+ ~t u - (1 + c

T
u)u

O
] ~ 0

I T O
au +X[u-(l + c u)u J � O

[ aMu 1 
+ Y(u - (1 + cTu)u O )] T[au l + X(u - ( 1 + cTu)u O)] = 0

Let denote the feasible set of (LECP 2 ), i. e.

= {( U
) Rri+l : aMu 1+ Y ( u - ( l + c Tu)u 0) > 0 , au’ +X(u ( l + c Tu)u

O) ~ O}

Proposition 2.26. If V = 4’, then a � 0 for every (
Ii

) e

Proof: Suppose there exists (~ ) E 

~2 
such that a = 0. Then

Y [ u _ ( l + c Tu)u
O

]~~~0

X [u_ (l + c
T
u)uOJ > 0 .

Hence, by Lem ma 1.2 , it follows that u - (1 + cTu)u O 
~ 0. Thus

0 <c ~ [u - ( 1  + cTu)u~~ = -l

which is a contradiction .

Remark. An equivalent formulation of the conclusion in Proposition 2. 26

can be stated as X(q, M) fl R(X) = 4’.

By the convexity of 
~~

, It follows that one and only one of the

following two statements must  hold:

(2. 25a) a > 0 for every (
U

) E

(2. 25b) a <0 for every

J~emma 2.27.  Let V = 4’ and # 4’. Suppose (2 .  25a) ( ( 2 .  25b)) holds.

Define

= {v  E Rn : Mu 1 
+ Yv � (.~.) 0, u

1 
+ Xv ~ (.~) o} - 



F 
-

~~~~~~~

--—-—

~~~~~

Then has a least (greatest) element ~ sa t i s fy ing  c
T

~ -~ (>)O.

Furthermore , (Mu 1 
# ~~~

T(u l 
+ ~~) = 0.

u I T O  T I
Proof: If ( )  the n v = (u - ( I + c u)u  

~ 2 ari d c v = -

The rest of proo f proceeds in the same way as in the proof of Lemma 2 . 18.

Theorem 2 . 2 8 .  Let V = 4’. Suppose rank(X) = n - I and the problem

(q, M) is feasible . Then the vector

(2 .  2 6) = - —~—~x~ + U
I

)

where V is the vector obtained in Lemma 2. 27 , is a solution to the linear

com pleme nta r i ty  problem (q , M).

Proo f: The assumpt ions  in Lemma 2. 27 are s a t i s f i ed.  Therefore , ~ is

wel l—def ined . It s u ff i c e s  to show that  U = - arid ~~~ = - solves

the problem (LEC P 2 ) . Noting that 1 + c
TU = 0 , we can easi ly deduce

that (_) indeed solves (LECP ) .  This establishe s the theorem.
a 2

Having demonstrated how , under the assumptions of Theorem 2. 28 ,

a solution to the linear complementarity problem can be generated from the

least (or greatest) element of the polyhedral set .&~~, 
we next establish

F 
a relationship between this solution ~ and the solution(s) to the

linear program (p,q, M) with p = r + M Ts.

Theorem 2. .~~~~~ Let ~ = 4’. Suppose rank(X) = n - 1 and ( q ,  M) is

feas ible. Then the vector ~ (defined in (2. 26)) 
solves the linear program

(p, q, M) with p = r + M TS. Moreover it is the unique solution to any

such linear program with r X + s ‘1>0.
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Proof: Assume for s implici ty ,  that ( 2 . Z S a )  holds. The argument which

follows is similar to that of Theorem 2. 20. Let x = Xu + au ’ e X(q , M),

then v = ~ (u - (1 + cTu)u O) ~ i’2 . Hence we have

— 1  T O
v < (u - (1 + c u)u

which implies

T_ 1
C v < - —

a

Moreover , by (2.23),

(2. 27) (r
T
X + sTY)~~< ~ (r TX + 

T~ )( - (1 + cTu)u O )

= i[( r TX + sTy)U ~ ~Tq~1 + cTu) ]  -

Furthermore ,

r T(Xu + au 1) + 5 T1q + M(Xu + au 1) ]  > a

Combining the above inequalit ies , we ded uce,

T 
= (r T 

+ 5 TM)( 
~~~~~ 

(X~ + u1))

= - ~~~~[( r TX + 5T~ )~ + s
Tq(c Tv) + (r T 

+ S TM)U I ]

<~~ [~~ {(r~ X + 5
TY)u + a(r

T 
+ 5

TM)u I 
+ 5

Tq(j  + c
Tu ) }J  - s

Tq

= (_ ~~~~X
i)[r

T
(Xu + au

1
) + 5T(q + M(Xu + au

1))] - s
Tq

< ( r  + s  M ) x = p x .

Therefore ~ solves the linear program (p, q, M).

—33—

I 

- - -- _
~~~~~~

_
~~~~~~~~~~~~ —~~~~~~~~~



Conversely, if x is a solution to (p, q, M) ,  then we must  have

equal i ty  i n ( 2 . 2 7 ) .  If r TX + 5
T~~>0 then by the uniqueness of ~ , It

— I T O  1 1follows tha t v = (u - ( 1 + c u)u ) .  Thus a = - — and Xu = - X~ .
a T_

Therefore , x = Xu + au ’ = - 

~~~~~~ + u
1) = ~~~. Thi: :stablishes the

theorem. o

We conclude this paper by proving a result (Corollary 2 . 31) which

s tre ngthens Corollary 4 of Mangasarian ’s report [ 7 ]  where it was shown

that if n > 3 and M is a positive matrix which is diagonally dominant

column-by-column, that is, m , . > m ., j = 1, . . . ,n , then conditions
i�j

(M l)  - (M3)  are satisfied (in fact for every n-vector q).

Proposition 2. 30. Let M be an n X n matrix satisfying

(2. 28a) MX = Y for some X, Y E Z

(2.28b) r
TX > O  for some r > O

(2 . 28c) Y = (‘1~) is such that Y~ < 0 for every j � i -

Then M E

Proof: Let c > 0 be small enough such that ‘1+ ~M E Z. Then

M(X + tI) = Y + cM and X + ci e K. Therefore M E C. o

Corollary 2. 31. Let n � 3 and let M be a positive n x n matrix

which satisfies either of the following conditions:

(2. 29a) diagonal dominance column-by-column: m .. ~ ~~~ j = I , - . . , n
l�j

(2. 29b) diagonal dominance row-by-row: m1. ~ m .., i = 1, .  . . , n
1 1)

Then M E C .
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Proof: We may without loss of generality, assume that M has been

normalized so that it has ones on the diagonal . Let M = 1+ F where

F = (F . . ) , F . = 0 and F.. = m .. for I � j .  Define X = I - F and11 11 ii 1)

Y = MX = l - F 2 . Clearl y X and Y Z . Furthermore , it is easy to

see that condition (2. 28c) is satisfied. We show that (2. 28b) is also

satisfied. It is clearly satisfied if (2 .  29a) holds. Now , if (2 .  29b) is true ,

then X K 0 (by Theore m ( 5 .4 )  in [ 3 ] )  and X is irreducible (see [ 8 ] ) .

The se two properties of X imply (2 .2 8b )  (by Theorem ( 5 .8 )  in [ 3 ] ) .

Consequently, by Pro position 2. 30 , M E C. 0
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